Modelo de estudio de cohortes


En temas de marketing online y de financiación de startups, la visión global a menudo se puede resumir en 3 variables: el CAC (Customer Aquisition Cost, o Coste de Adquisición de Cliente), el LTV (customer LifeTime Value) y la profundidad del estanque en él que estás pescando (captando clientes potenciales).

El CAC es relativamente fácil de calcular: se obtiene dividiendo el coste de marketing total del mes por el número de nuevos clientes del mes.

El LTV también es bastante fácil de calcular si tienes ya medida la recurrencia: se obtiene multiplicando el margen bruto de un pedido  por la recurrencia de los clientes (el número estimado de pedidos que hará un cliente en su vida). 

El margen bruto por pedido: el margen bruto medio por pedido es la diferencia entre el ingreso medio por pedido (sin IVA por supuesto) y los costes directos que incluyen cualquier coste directamente relacionado con la venta (el coste de los bienes o servicios vendidos, el transportes, la parte variable de la logística, cualquier otro coste variable que depende directamente del pedido). Aquí para estimar el LTV no se tienen en cuenta los costes fijos o los costes de marketing.

La recurrencia: por mi experiencia, lo que más complica el análisis es el cálculo de la recurrencia. Para estimarla lo correcto es hacer un estudio de cohortes. Como se trata de un análisis un pelín complejo, muchas startups no saben por dónde empezar. El objetivo de este post es de intentar explicar cómo realizar un análisis de cohortes, de ofrecer una plantilla a disposición de todos, y también de pedir vuestro feedback para mejorarlo. Por cierto, lo que sigue ya es más técnico: si quieres seguir respira hondo y ponte cómodo ;)

Modelo de estudio de cohortes:

Descargar fichero Excel

Ejemplo de estudio de cohortes

Imagen ejemplo de estudio de cohortes

Cómo actualizar el fichero con los datos de tu negocio:

  1. Nuevos clientes de cada mes: completa las celdas B5 a B19 con el número de nuevos clientes del mes. Ojo: sólo nuevos clientes del mes, no clientes totales. Un cohorte son clientes que compran por primera vez en aquel mes.
  2. Pedidos de cada cohorte por mes: completa la primera tabla “Valores absolutos = número de pedidos“: las celdas C5 a Z19 con el número de pedidos mes a mes de los clientes nuevos del mes X.
  3. Pedidos / nuevo cliente: automáticamente se actualizará la segunda tabla “Valores relativos (pedido / cliente de la cohorte)“.
  4. Recurrencia media por mes observada: la fila 42, celdas C42 a M42, calcula la recurrencia media por mes observada para los primeros meses. En esta media puedes incluir el número de meses que te parezca relevante. Lo ideal es utilizar los 12 últimos si ya llevas más de un año, para evitar el ruido por estacionalidad. Algunos también excluyen de esta media el dato del último mes dado que éste puede variar todavía por las devoluciones por venir.
  5. Ajusta el área de datos de la gráfica “Recurrencia – Tendencia”: coge sólo las filas y columnas sobre las que quieres hacer el análisis: botón derecho por encima de la gráfica, “Seleccionar datos”, modificar el área de datos “=’Cohortes total’!$D$42:$M$42” donde cambias “M” por la última columna con datos observados (ejemplo poner “H” si sólo tienes datos de los 5 últimos meses).
  6. Recurrencia media extrapolada a los meses siguientes: la gráfica  “Recurrencia – Tendencia” (visible en la celda P26) muestra la evolución de la repetición media de los cohortes durante los X primeros meses (11 meses en el ejemplo adjunto).  La línea azul es lo observado y la línea negra es la regresión logarítmica sobre la línea azul. Esta línea negra es la tendencia, y nos permite estimar cómo podría ser la línea azul en los siguientes meses. Si sólo tienes 2 o 3 meses de observación es probablemente mejor remplazar la función logarítmica por una regresión lineal. En otros casos es posible que una regresión polinómica o potencial se ajuste mejor a lo observado, pero por mi experiencia en general la logarítmica funciona bien.
  7. Gracias a la formula de la línea negra (y=-0,031ln(x)+0,1003) podemos estimar la recurrencia sobre 24 meses en lugar de estimarla sólo sobre los 11 primeros meses de nuestra observación.
  8. Actualiza la formula que está en Z42 (=-0,031*LN(Z45)+0,1003) con los datos que aparecen en tu gráfica (cambia “-0,031” y “0,1003” por lo que veas en tu gráfica).
  9. Copia la nueva formula que tienes en Z42 y pégala en las celdas anteriores Y42, X42, … hasta la primera columna donde no tienes datos observados (ej. en N42 en el ejemplo). En otras palabras en C42 hasta M42 tenemos datos observados, y en N42 hasta Z42 tenemos datos extrapolados en base a la regresión logarítmica.
  10. La suma de estos datos de pedidos / nuevo cliente por mes de A42 a Z42, nos da la recurrencia estimada sobre 24 meses en AA42. En nuestro ejemplo la recurrencia estimada sobre 24 meses es de 1,76, lo que significa que estimamos que cada nuevo cliente captado hará de media 1,76 pedidos. Si quieres estimarla sobre menos de 24 meses basta con incluir menos columnas en la suma.
  11. Luego calculas el LTV multiplicando tu margen bruto por pedido por la recurrencia. Por ejemplo si el margen bruto fuera de 20€ por pedido, el Lifetime Value de un cliente sería de 35,2€.
  12. Con esta estimación de LTV ya sabes hasta cuánto estás dispuesto a gastarte de media por un cliente. Con un LTV de 35,2, lo razonable sería no pasarse de 35,2€ de CAC medio (por encima de 35,2 los clientes nos cuestan de media más de lo que valen).

Agradecimiento: gracias a Clever PPC por el modelo original de esta hoja de cálculo, a Marta y a Fernando Constantino por revisar este post y a José Cabiedes por haberme enseñado sobre cohortes.

Actualización 22/11/2013: Nacho Hernández de Yaysi lo explica muy bien en lenguaje más natural en su comentario:

Para asegurarme de que lo entiendo bien y por si a alguien le puede ayudar a comprenderlo también, lo que entiendo que estamos haciendo aquí es algo así como calcular la probabilidad de que un usuario que ha comprado en un mes determinado por primera vez realice otra compra en cada uno de los meses posteriores. Para calcular esta probabilidad usamos datos históricos, por ejemplo, cuantas personas que compraron por primera vez en mayo de 2013 compraron también en junio, julio, etc… Así, si tuvimos 100 ventas a clientes nuevos en mayo y de esos 100, 10 nos vuelven a comprar en junio la probabilidad de que un comprador de mayo compre en junio es de un 10%.

Al agregar todos los datos lo que obtenemos es la probabilidad de que alguien que compra en el mes N por primera vez realice otra compra en el mes N+1, N+2… Así si utilizamos años completos en los datos históricos se elimina la estacionalidad.

Cuando se suman todos los datos históricos más los extrapolados lo que obtenemos es una estadística sobre cuantos pedidos nos va a hacer un usuario (de media) en un período determinado.

También te podría interesar:

¡comentarios bienvenidos! así podremos ir mejorando la plantilla y este post.

Etiquetas: , , , , , ,

64 comentarios to “Modelo de estudio de cohortes”

  1. Aitor Says:

    En aras a una interpretación mas sencilla sin tener que descargar la excel ¿y si haces que la imagen sea abra más grande en otra pestaña? así podemos seguir más de cerca la explicación.. sin mas..
    Me costará una semana entenderlo pero haremos un intento…yo de momento uso el ojímetro, mis cohortes no tienen comportamientos muy diferentes (por minicambios/ajustes) y actuan en general con un patrón de comportamiento “bastante” predecible “ojimetricamente” hablando. ;-(
    Gracias por el esfuerzo de HACER y compartir.

    Me gusta

    • François Derbaix Says:

      ¡gracias por la sugerencia Aitor” He modificado la imagen que ahora se abre más grande en otra pestaña. En cuanto al ojímetro es sin duda la mejor primera aproximación (no tiene sentido analizar sin primero visualizar los datos). Luego, para el seguimiento mes a mes creo que el cálculo más preciso puede aportar bastante.

      Me gusta

  2. Sergio Balcells Says:

    puede ser que el primer sea Sept 12 y no Sept 13?
    saludos F
    Sergio

    Me gusta

  3. Octavi Says:

    Por qué dices: Con un LTV de 35,2, lo razonable sería no pasarse de 35,2€ de CAC medio (por encima de 35,2 los clientes nos cuestan de media más de lo que valen).
    Asumiendo CACs crecientes, por que no hablas de CAC marginal en lugar de medio? En cuanto el CAC marginal pasa del LTV estas perdiendo dinero con cada nuevo usuario que consigues.

    Tal vez tiene que ver con lo de mirar las ventas y no el margen? ;-)
    CAC MEDIO = LTV es lo que puedes financiar
    CAC MARGINAL = LTV es lo que optimiza resultados.

    Me gusta

    • François Derbaix Says:

      Buena pregunta :) Tienes razón en que el CAC marginal es lo que optimiza el resultado, y el CAC medio = LTV es lo que maximiza el crecimiento. Si lo que buscas es resultado entonces el CAC medio es tu medida, pero en mi opinión para una startup es un camino equivocado, demasiado conservador. Para una startup lo primero debería ser el crecimiento: maximizar el crecimiento, no la rentabilidad, por ello recomiendo invertir hasta que CAC medio (y no CAC marginal) esté cerca del LTV.

      Me gusta

  4. Goyo Says:

    Gracias por compartirlo François! :)

    Me gusta

  5. Álvaro Ordóñez Gómez Says:

    ¡Gracias por compartir tus conocimientos François! Me costará entenderlo todo pero merece la pena. Un dato, los enlaces hacia los consejos para emprendedores 1 y 2 apuntan los dos al 1º el segundo debería de llevar a: https://francoisderbaix.com/2013/05/23/consejos-marketing-para-startups-2/

    Saludos!

    Me gusta

  6. Nacho Says:

    Mil gracias por el post y el excel, llevaba tiempo detrás de calcular este dato de manera fácil y a sabiendas de que lo hacía correctamente!

    Para asegurarme de que lo entiendo bien y por si a alguien le puede ayudar a comprenderlo también, lo que entiendo que estamos haciendo aquí es algo así como calcular la probabilidad de que un usuario que ha comprado en un mes determinado por primera vez realice otra compra en cada uno de los meses posteriores. Para calcular esta probabilidad usamos datos históricos, por ejemplo, cuantas personas que compraron por primera vez en mayo de 2013 compraron también en junio, julio, etc… Así, si tuvimos 100 ventas a clientes nuevos en mayo y de esos 100, 10 nos vuelven a comprar en junio la probabilidad de que un comprador de mayo compre en junio es de un 10%.

    Al agregar todos los datos lo que obtenemos es la probabilidad de que alguien que compra en el mes N por primera vez realice otra compra en el mes N+1, N+2… Así si utilizamos años completos en los datos históricos se elimina la estacionalidad.

    Cuando se suman todos los datos históricos más los extrapolados lo que obtenemos es una estadística sobre cuantos pedidos nos va a hacer un usuario (de media) en un período determinado.

    Me surgen una duda:
    ¿qué cantidad de datos (n° de clientes/ventas) mínimos sería necesario tener para que el análisis sea consistente?

    De nuevo, gracias.

    Me gusta

  7. matt heusch Says:

    interesante decir que SaaS como https://mixpanel.com/retention/ te pueden ayudar a calcularlo también automáticamente.

    Me gusta

  8. Luis Says:

    Gracias por el modelo, muy interesante. Creo que es especialmente válido cuando se tienen cifras suficientemente grandes para trabajar bien estadísticos. Lo que me gustaría preguntarte es cómo ves su uso para mercados con muchos cambios y muy dinámicos en los que acciones de competidores pueden cambia la dinámica de la cohorte de forma grande.
    En nuestro caso, estando en un nicho donde la recurrencia es baja, creo que puede ser muy útil para analizar compras de viajes, por ejemplo, por temas de cumpleaños o fechas señaladas. La recurrencia podría estar marcada por la fecha en sí…
    Otra aplicación que le veo es cómo diferentes acciones (precio, nuevos productos, etc.) pueden hacer variar la recurrencia…
    Muy útil la idea y el modelo…Da para pensar

    Me gusta

  9. 12 características que debería reunir un Jefe de Proyecto | Javilop Says:

    […] que convertirte en un friki de las métricas. De crecimiento, de ventas (CAC siempre menor que CLV), de clientes, geográficas, etc. Comprueba que coinciden o no con tus objetivos y pivota en […]

    Me gusta

  10. Jose Luis Says:

    Gran post Francois!!

    Tengo una pregunta. Si eres una startup de reciente creación y quieres presentar las estimaciones financieras a futuros inversores, con respecto al CAC y al LTV, qué es mejor:

    1- Hacer unas estimaciones de CAC y LTV, aunque dichas estimaciones sean “casi” aleatorias dada la incertidumbre inicial y la no existencia de un histórico en la empresa.

    2- Ser sinceros y no presentar unas estimaciones que valen para poco.

    gracias!!

    Me gusta

    • François Derbaix Says:

      Hola José Luis, la idea es que el CAC y el LTV no se estimen si no que se midan: CAC = gasto marketing / nuevos clientes, y LTV = margen bruto * recurrencia extrapolado con el análisis decohortes. Lo suyo es no manipular el cálculo ;) No sé si responde a tu pregunta…

      Me gusta

  11. Jose Luis Says:

    Entonces Francois, por lo que dices, si yo voy a acudir a inversores pero no tengo todavía datos reales, no me recomiendas hacer mis estimaciones de CAC y LTV? Yo no tengo datos reales porque todavía no hemos salido, pero sí unas estimaciones razonables porque conozco el sector.

    Gracias.

    Me gusta

    • François Derbaix Says:

      Hola José Luis, a defecto de datos reales siempre es bueno hacer estimaciones o hipótesis que se puedan validar luego, pero de cara a inversores estas estimaciones sin validar valdrán de poco. De todos modos en caso de no haber lanzado aún el negocio, te recomendaría financiarte con ahorros propios y FFF’s, y sólo salir a buscar inversores profesionales una vez tienes ya las primeras métricas.

      Me gusta

  12. LMQI, La Métrica Que Importa en tu startup | Estrategia, Startups y Modelos de negocio Says:

    […] TRANSACACIONALES (modelos donde alguien vende algo y se produce una transacción) La métrica clave por excelencia de un e-commerce pero de muchos otros negocios, tanto offline como online. Tiene que ver con aspectos clave del proceso de compra y cómo fluye el cliente a lo largo del embudo de conversión, es decir: conversión (hay dudas razonables sobre si a secas ésta es la mejor métrica), tamaño de la compra, tasas de abandono… y ojo, es importante saber comprender cómo se comportan todas estas métricas según fuentes de tráfico o según cohortes. […]

    Me gusta

  13. LMQI, la métrica que importa Says:

    […] 1. TRANSACACIONALES (modelos donde alguien vende algo y se produce una transacción). La métrica clave por excelencia de un e-commerce pero de muchos otros negocios, tanto offline como online. Tiene que ver con aspectos clave del proceso de compra y cómo fluye el cliente a lo largo del embudo de conversión, es decir: conversión (hay dudas razonables sobre si a secas ésta es la mejor métrica), tamaño de la compra, tasas de abandono… y ojo, es importante saber comprender cómo se comportan todas estas métricas según fuentes de tráfico o según cohortes. […]

    Me gusta

  14. Fabio Mendez Says:

    Excelente pagina…

    Me gusta

  15. Una buena noticia | Blog actuales.es Says:

    […] éxito con sus empresas, gracias a todo el conocimiento que coomparte a través de su blog. Ahora espero que esta mayor capacidad para invertir en startups le permita poder seguir cumpliendo […]

    Me gusta

  16. Pablo Sánchez Says:

    Buen artículo François!

    Pero tengo una duda, según lo que comentas aquí “CAC marginal es lo que optimiza el resultado, y el CAC medio = LTV es lo que maximiza el crecimiento.” no tienes en cuenta otra parte de la ecuación que son los gastos fijos.

    Es decir si al final el CAC = LTV, la empresa estaría en perdidas, ya que no hay suficiente beneficio para cubrir los gastos fijos.

    ¿Con qué ingresos cubres gastos de personal, alquileres…?
    ó
    ¿Recomiendas en una primera fase crecer a toda costa sin ser rentables y soportar los gastos fijos con financiación?

    Gracias!

    Me gusta

    • François Derbaix Says:

      Hola Pablo, es así: recomiendo como dices: al inicio crecer a toda costa sin ser rentables y soportar los gastos fijos con financiación. Este crecimiento es lo que te debería permitir optimizar tus gastos, mejorar el margen y a medio plazo ser rentable. En mi opinión en una startup la creación de valor pasa primero por el crecimiento de las ventas, sin buscar la rentabilidad a corto plazo.

      Me gusta

      • Pablo Sánchez Says:

        ok, comparto tu opinión. Pero para un ecommerce, como es mi caso, se puede crecer de muchas vías, no sólo pagando más por adquirir un nuevo cliente, como puede ser ampliar catálogo ó abrir nuevos mercados, siempre teniendo en cuenta la liquidez que uno dispone

        Me gusta

  17. El ecommerce liderará en todos los sectores | Te lo Envío por SEUR Says:

    […] También recomendaría buscar un nicho de mercado o una especialización donde no compitan de frente con Amazon como, por ejemplo, algunos ecommerce donde he invertido: Deporvillage, Zacatrus, We Are Knitters, Mumumio… También suelo ofrecer recomendaciones en mi blog, como en este post de consejos para emprendedores o sobre el modelo de análisis de cohortes. […]

    Me gusta

  18. Lo que la mayoría de gente no entiende sobre Lean Startup | Startups, Estrategia y Modelos de negocio Says:

    […] todas madres que acaban de empezar a trabajar de nuevo?)… algo para lo que se puede utilizar un estudio de cohortes pero por funcionalidades. Y no nos engañemos, esto aplica exáctemente igual al mundo offline… […]

    Me gusta

  19. Luis Yañez Says:

    quien me ayuda!

    Un cliente del , durante 5 años genera los flujos que se
    presentan en la tabla
    Los costos fijos anuales de atender al cliente son de 75 UM.
    El costo de adquirir el cliente fue de $M 25 y su permanencia en la empresa se estima en 5 años. ¿Cuál es su LTV? Si la tasa de descuento de la empresa se ha fijado en un
    15%.

    Tabla N°.1 Ingresos Proyectados

    Años 1 2 3 4 5

    Monto[$M] 85 96 104 121 125 ( cada año respectivamente)

    Me gusta

  20. Lo que la mayoría de la gente no entiende sobre Lean Startup Says:

    […] todas madres que acaban de empezar a trabajar de nuevo?)… algo para lo que se puede utilizar un estudio de cohortes pero por funcionalidades. Y no nos engañemos, esto aplica exáctemente igual al mundo offline… […]

    Me gusta

  21. LO QUE LA MAYORÍA DE GENTE NO ENTIENDE SOBRE LEAN STARTUP | Modelo Canvas Says:

    […] que acaban de empezar a trabajar de nuevo?)… algo para lo que se puede utilizar un estudio de cohortes pero por funcionalidades. Y no nos engañemos, esto aplica exáctemente igual al […]

    Me gusta

  22. dgh12 Says:

    Hola François estoy poniéndome a realizar el cálculo del poquito tiempo que tengo (3 meses) y me pasa un pequeño problema. En uno de los meses el número de clientes nuevos es 0. Con lo cuál la división es incalculable. He hecho la trampa de poner 1 nuevo cliente y 0 nuevas compras pero no se si esto es lo adecuado.

    Muchas gracias

    Me gusta

  23. fumarmata Says:

    Hola,

    Tengo una duda: En las columnas C42:M42 se calcula “la media de las medias de compras por usuario” de cada periodo. No debería ser “el total de compras del periodo entre el total de usuarios existentes en el periodo”?

    En ese caso, E42 (y demás celdas del estilo) deberían contener

    =SUM(E5:E19)÷SUMIF(E5:E19;””;$B5:$B19)

    Quizás se entiende mejor con este ejemplo. No es lo mismo:
    ((2/1000) + (8/4))/2 = 1.001 <–la media de dos medias
    que
    ((2+8) + (1000+4))/2 = 507 <–la suma de compras entre la suma de usuarios

    Aunque quizás no he entendido realmente qué es el contenido de esas celdas.

    Saludos,

    Marc

    Me gusta

    • François Derbaix Says:

      Hola Marc, interesante pregunta. Creo que ambas posibilidades (media de las medias, o media general) valen, según el contexto.

      En mi opinión para una startup es mejor hacer la media de las medias, para no dar más peso a los cohortes con más nuevos compradores sobre los otros.

      A cambio, para una empresa más consolidada, con menos crecimiento, quizás sea más correcto hacer la media general como comentas, para estimar mejor el LTV.

      Por otra parte, en caso de duda, lo que haría sería realizar ambos cálculos y miraría si el resultado difiere mucho o no, y por qué. Al final lo importante es entender los números, saber aprender de ellos, y saber hasta cuánto uno está dispuesto a pagar por un nuevo comprador.

      Me gusta

    • Guillermo Córdoba Says:

      yo también opino que debería ser una media ponderada, aun con la explicacion de François. Muchas gracias por compartir, excelente post!

      Me gusta

  24. Carlos Says:

    Excelente post François.

    Me gusta

  25. Consejos marketing para startups | Blog de François Derbaix Says:

    […] Actualización 11/2013: Tercera y mejor parte en “Modelo de estudio de cohortes“ […]

    Me gusta

  26. Ylenkuz Says:

    Buenas tardes François, realmente un excelente aporte, primero que nada agradecerte. Dicho ésto, tengo una duda, en este modelo no se tienen en cuenta los pedidos que no sean de clientes nuevos? Es decir, dónde se calculan la totalidad de pedidos de clientes ya registrados por mes?.
    Gracias de antemano.

    Me gusta

  27. Emoziona | Los criterios de inversión de François Derbaix - Emoziona Says:

    […] CAC < LTV: que este crecimiento se consiga con una inversión en marketing razonable: con un coste de adquisición de cliente inferior al lifetime value (ver post sobre el CAC y LTV). […]

    Me gusta

  28. Tu problema no es conseguir dinero, es saber gastarlo | Blog actuales.es Says:

    […] explica muy bien el emprendedor y business angel François Derbaix en sus artículos: Modelo de estudio de cohortes y consejos de marketing para startups 1 y 2, que sin duda os recomiendo estudiar con […]

    Me gusta

  29. El potencial de los cohortes en el comercio electrónico - Says:

    […] un tiempo me recomendaron la lectura de un artículo de François Derbaix sobre cohortes que me iluminó y que os recomiendo a todos. La verdad es que nunca había oído a hablar de este […]

    Me gusta

  30. Os presentamos a Elisa Ramírez, Socióloga, Analista Web y Emprendedora | El blog de las Madrid Geek GirlsEl blog de las Madrid Geek Girls Says:

    […] Entre mis blogs preferidos sobre Analítica están el de François Derbaix (muy bueno su post sobre el modelo de estudio de cohortes) y el de Ferriol […]

    Me gusta

  31. Gustavo Troconis Says:

    Hola Francois por favor podrías explicarme un poco más porque tomas los valores de “-0,031” y “1.003”. A mi entender este rango lo defines a partir de los promedios obtenidos por los meses en recurrencia. Entonces, aquí viene mi planteamiento si yo reduzco la diferencia existente en el margen ( P.E. paso de “-0,31” a “-0.01” y “1.003” a “1.09” ) podré obtener resultados mas precisos o es indiferente?

    Me gusta

  32. Alex ER Says:

    Hola de nuevo François! te comenté en tu último post.

    He lanzado hace poco un proyecto para la limpieza y plancha en el hogar (seguro que te suenan varios parecidos).

    Se llama Clintu.es

    Quería comentarte si a parte del CAC, no analizas también el coste de retener al cliente. Ofertas futuras etc. Consiguiendo bajar el churn con una mayor inversión en permanencia, quizá sacrificando adquisición.

    ¿Qué opinas?

    Gracias!

    Alex

    Me gusta

  33. Como calcular el Valor del Ciclo de vida de un Cliente o Customer Lifetime Value Says:

    […] no es algo que sea sencillo de explicar, creo que lo mejor es que lo dejemos aquí y os envíe a un post que realizó François Derbaix donde ha confeccionado un Excel que os permitirá calcular la […]

    Me gusta

  34. El hermano feo de crecimiento en startups: el churn rate | Startups, Estrategia y Modelos de negocio Says:

    […] En Internet, a menudo el principal problema que tenemos es decidir qué es “perder” a un usuario, ya que en muchos modelos lo habitual no es que se dé “activamente” de baja, sino símplemente que deje de venir… así que lo más común es definir una franja temporal (30 días, 90 días…etc, depende del negocio) y considerar que todo cliente que ha dejado de venir en ese periodo es un cliente perdido (algo muy complicado en los primeros tiempos de una startup, ya que no sabemos cuánto tiempo es normal que permanezcan los clientes). En cualquier caso la mejor forma de analizarlo es con un buen análisis de cohortes. […]

    Me gusta

  35. Métricas Piratas y Plan Financiero en Startups - Vicente Esteve Says:

    […] Muchos emplean el modelo de cohortes para estimar la recurrencia (aquí un muy buen post al respecto de François Derbaix), pero creo que hay que emplearlo con prudencia […]

    Me gusta

  36. Como calcular el Valor del Ciclo de vida de un Cliente o Customer Lifetime ValueComo calcular el Valor del Ciclo de vida de un Cliente o Customer Lifetime Value Says:

    […] no es algo que sea sencillo de explicar, creo que lo mejor es que lo dejemos aquí y os envíe a un post que realizó François Derbaix donde ha confeccionado un Excel que os permitirá calcular la […]

    Me gusta

  37. ¿Cómo potenciar nuestros productos luego de su lanzamiento? Says:

    […] todas madres que acaban de empezar a trabajar de nuevo?)… algo para lo que se puede utilizar un estudio de cohortes pero por funcionalidades. Y no nos engañemos, esto aplica exáctemente igual al mundo offline… […]

    Me gusta

  38. CAC y LTV, las métricas clave para descubrir si tu negocio online es viable Says:

    […] la probabilidad de que un usuario nos vuelva a comprar en un periodo determinado. Te dejo este post explicativo de Francois Derbaix que además adjunta un excel para su […]

    Me gusta

  39. Neutralizar la estacionalidad en el análisis de cohortes | Blog de François Derbaix Says:

    […] con el análisis de cohortes te recomiendo leer primero mi post de introducción al “Modelo de estudio de cohortes” […]

    Me gusta

  40. Huracán Fever: cuatro años mal llevados de fiebre emprendedora. | Valor de cambio Says:

    […] todo se calcula por estimación: si tienes una y quieres comprender mejor las métricas, aquí y aquí están todas […]

    Me gusta

  41. El hermano feo del crecimiento: el churn rate - GAREY Says:

    […] En Internet, a menudo el principal problema que tenemos es decidir qué es “perder” a un usuario, ya que en muchos modelos lo habitual no es que se dé “activamente” de baja, sino símplemente que deje de venir… así que lo más común es definir una franja temporal (30 días, 90 días…etc, depende del negocio) y considerar que todo cliente que ha dejado de venir en ese periodo es un cliente perdido (algo muy complicado en los primeros tiempos de una startup, ya que no sabemos cuánto tiempo es normal que permanezcan los clientes). En cualquier caso la mejor forma de analizarlo es con un buen análisis de cohortes. […]

    Me gusta

  42. Los 30 mejores inversores y mentores para tu startup y empresa - BATUZA Says:

    […] no ha leído su famoso post sobre análisis de cohortes.  Es un Excel a través del que puedes estimar el LTV (Life Time Value) de tus clientes, con […]

    Me gusta

  43. Dashboard y KPIs de Medición Marketing y CLV Says:

    […] * Si quieres hacer un excel rápido e indoloro para calcular el CLV, François Derbaix dejó este en su blog que me parece muy muy útil. […]

    Me gusta

  44. Alfonso Goiriz Says:

    Buenas François, Puede ser que la celda Z45 sea un 23 en lugar de un 22?

    Un saludo y gracias.

    Me gusta

    • François Derbaix Says:

      cierto, lo acabo de corregir, ¡gracias Alfonso!

      Me gusta

      • Alfonso Says:

        François, otra pregunta, disculpa: en el ejemplo del LTV de 35,2 que has puesto, si realmente te gastas los 35,2€ por cada cliente, no te queda margen bruto para cubrir los costes fijos, no?

        Me gusta

      • François Derbaix Says:

        Hola Alfonso, gracias por preguntar. Así es: no dejas margen para cubrir los costes fijos (hará falta financiación para cubrirlos), pero maximizas el crecimiento e inviertes en mejorar tu margen de mañana (por el crecimiento del volumen y los probables efectos de escala, de experiencia o de red que tenga tu negocio).

        Me gusta

      • Alfonso Says:

        Gracias Françoix. Discúlpame porque tengo otra duda: en este ejemplo dices que no hay que incluir los costes de marketing en el margen bruto, pero en un marketplace los costes de marketing es normal que estén dentro del margen bruto,no?

        Gracias!

        Me gusta

  45. François Derbaix Says:

    Hola Alfonso, la idea es comparar el coste con el margen que te trae. Como tenemos en cuenta el coste de marketing en el CAC, entonces no hay que tenerlo en cuenta en el LTV (margen bruto x recurrencia). La idea es ¿Cuánto pago por un cliente y cuánto gano con un cliente? El coste d emarketing lo incluyes en la parte “Cuánto cuesta”.

    Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s


A %d blogueros les gusta esto: